THEORETICAL FRAMEWORK FOR THE DEVELOPMENT OF ARTIFICIAL NEURAL NETWORKS AIMED AT ASSISTING IN THE DIAGNOSIS OF HODGKIN'S LYMPHOMA
Abstract
This study focuses on a theoretical framework for the development of artificial neural networks (ANNs) with the aim of assisting in the diagnosis of the hematological disease Hodgkin's Lymphoma (HL). Initially addressing the architectures and algorithms of neural networks, as well as learning and training methods. The study elucidates how these techniques can be applied to identify complex patterns amidst human DNA genetic mutations, showcasing tools and concepts to achieve the objective. Concurrently, the article explores Hodgkin's Lymphoma, examining the involved genes and gathering information provided through public databases. The integration of this genetic information with ANNs has the potential to create a robust and efficient tool. By establishing this multidisciplinary theoretical base, the article lays the foundations for future developments of systems that seek to improve the diagnosis of Hodgkin's Lymphoma and other predominantly genetic diseases, which can, consequently, achieve more effective and personalized treatments.
Downloads
Published
Issue
Section
License
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade. Declaro, ainda, que uma vez publicado na revista Caderno de Publicações, editada pelo Instituto Federal de santa Catarina, o mesmo jamais será submetido por mim ou por qualquer um dos demais co-autores a qualquer outro periódico. Através deste instrumento, em meu nome e em nome dos demais co-autores, porventura existentes, cedo os direitos autorais do referido artigo ao Instituto Federal de Santa Catarina e declaro estar ciente de que a não observância deste compromisso submeterá o infrator a sanções e penas previstas na Lei de Proteção de Direitos Autorias (Nº9609, de 19/02/98).