22ª Semana Nacional de ciência e tecnologia

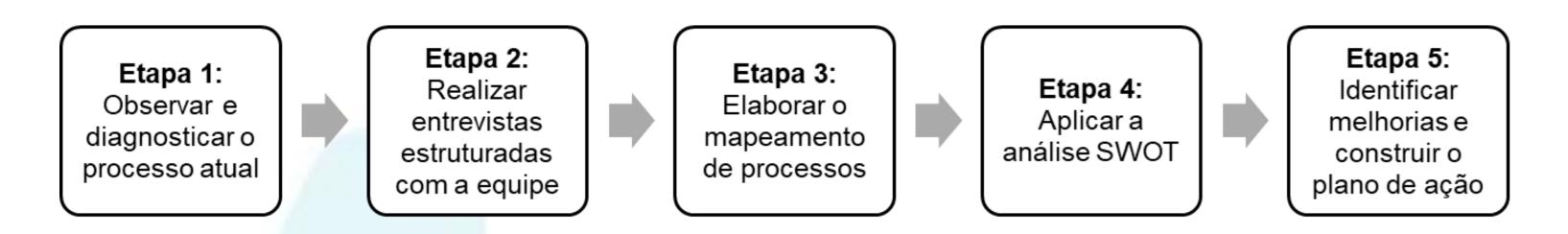
Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Avaliação do processo de manutenção de um pasteurizador industrial: proposição de melhorias para uma agroindústria de laticínios

Ana Clara Felipe - ana.f2004@aluno.ifsc.edu.br Eduardo Cracco de Moura - eduardo.cm2001@aluno.ifsc.edu.br Mateus Müller Franco - mateus.muller@ifsc.edu.br

INTRODUÇÃO

A manutenção desempenha um papel fundamental na indústria, especialmente no setor de laticínios, onde falhas operacionais comprometem não apenas a produtividade, mas também a segurança alimentar. Segundo Silva Filho *et al.* (2021), a gestão da manutenção ganha destaque, pois o dinamismo e a confiabilidade da linha produtiva dependem diretamente da preservação dos maquinários e processos. De acordo com Bisson (2017), a gestão da manutenção visa assegurar a disponibilidade dos ativos produtivos, reduzindo falhas, custos de funcionamento e tempo de equipamento parado.


Na indústria de laticínios, processos críticos como a pasteurização exigem níveis elevados de controle operacional e sanitário, demandando práticas de manutenção estruturadas, bem como mão de obra qualificada. Contudo, a escassez de profissionais capacitados e a ausência de metodologias de gestão de processos frequentemente resultam em falhas operacionais, aumento do tempo de inatividade dos equipamentos e prejuízos à cadeia produtiva (Lacerda, 2017).

Diante deste contexto, a pesquisa busca responder a seguinte questão: "Como a aplicação de ferramentas de gestão e gerenciamento de processos de negócio pode melhorar a eficiência, reduzir o tempo de parada de máquina e aumentar a disponibilidade do pasteurizador em uma agroindústria de laticínios?"

OBJETIVOS

- **Objetivo geral:** Analisar as rotinas de manutenção de um pasteurizador industrial, a fim de elaborar um plano de melhorias para a agroindústria de laticínios.
- Objetivos específicos:
- 1. Mapear o processo atual de manutenção do pasteurizador industrial, identificando suas etapas, responsáveis, gargalos e métodos utilizados.
- 2. Realizar uma análise SWOT para diagnosticar os pontos fortes, fracos, oportunidades e ameaças relacionados à manutenção do equipamento.
- 3. Propor um plano de ação baseado na metodologia 5W2H, com foco na implementação de melhorias identificadas a partir da análise do processo.

METODOLOGIA

RESULTADOS

- Observar e diagnosticar o processo atual: A primeira ação foi acompanhar de perto como o processo de manutenção vem acontecendo. Foram feitas visitas na planta, conversas informais com operador técnicos, além de análise dos poucos registros existentes, como ordens de serviço e planilhas dispersas. Foi possível perceber, já nesse início, que os fluxos de informação são falhos, a comunicação entre operação e manutenção não é bem definida, e as atividades acabam acontecendo de maneira muito reativa.
- Realizar entrevistas estruturadas com a equipe: Com o objetivo de aprofundar o diagnóstico, foram realizadas entrevistas estruturadas com a Coordenadora de Engenharia da agroindústria e com a equipe técnica necessária. As perguntas foram elaboradas para compreender não apenas os procedimentos formais existentes (ou sua ausência), mas também a percepção da gestão em relação aos principais problemas, desafios enfrentados e dificuldades presentes na rotina de manutenção.

Elaborar o mapeamento de processos:

COMO? O QUE? Restabelecimento do funcionamento POR QUÊ revela Verificou-se que o processo é altamente dependente do conhecimento empírico dos técnicos e se desenvolve de forma majoritariamente que o propósito do processo é restabelecer rapidamente informal. O diagnóstico inicial costuma ser realizado apenas por inspecão visual, sem auxílio de instrumentos específicos ou checklists o funcionamento da pasteurizadora, evitando paradas padronizados que orientem a busca pela causa raiz das falhas. As informações sobre as falhas chegam à equipe de manutenção quase sempre prolongadas que impactem negativamente a produção e por comunicação verbal ou via mensagens instantâneas, sem registro no sistema ou qualquer tipo de rastreabilidade, o que impede um gerem prejuízos econômicos, além de assegurar a controle adequado das solicitações. Não há POPs específicos para a manutenção corretiva do equipamento, gerando intervenções segurança alimentar e a integridade do produto improvisadas, principalmente quando faltam peças ou ferramentas adequadas. Após a intervenção, os testes de funcionamento do processado. Contudo, a forma como o processo ocorre pasteurizador são feitos rapidamente, sem procedimento que garantam a validação da eficácia do reparo. Como consequência, há dificuldade atualmente não atende plenamente a esses objetivos, em programar ações preventivas ou mudanças no processo, pois não há dados consolidados nem lições aprendidas, e o conhecimento técnico pois mantém o ciclo vicioso de falhas recorrentes, permanece concentrado apenas na experiência individual. São inúmeras oportunidades de melhoria, como a criação de procedimentos tempo elevado de máquina parada e perda de confiança operacionais detalhados, a implementação de checklists para inspeção, a formalização da comunicação via sistema, documentação das por parte da equipe produtiva.do pasteurizador, intervenções, a análise de causa raiz e a validação técnica dos reparos com participação ativa do setor de produção. permitindo a retomada imediata da produção e evitando maiores prejuízos econômicos. Uma vez que as falhas COM QUÉ? tendem a se repetir, e não há confiança plena da produção na confiabilidade do serviço realizado. Os recursos materiais são limitados. A manutenção conta com ferramentas básicas, algumas peças de reposição, EPIs e manuais. Existe, uma fragilidade na gestão de materiais,

> Manutenção de Pasteurizadores na Indústria de Lácteos

O processo envolve diretamente técnicos mecânicos e elétricos, supervisores de manutenção e operadores da produção, sendo que estes últimos são responsáveis por acionar a manutenção sempre que percebem falhas no equipamento. Observou-se carência de treinamentos específicos, tanto para o time técnico, referente ao funcionamento do pasteurizador e às melhores práticas de manutenção, quanto para os operadores, que poderiam contribuir com relatos mais precisos sobre os sintomas apresentados pela máquina. Melhorias importantes seriam a capacitação contínua da equipe técnica em métodos estruturados de diagnóstico e reparo, bem como treinamentos direcionados

aos operadores, visando melhorar a comunicação e a colaboração

QUEM?

COM QUE MEDIDAS?

Constatou-se que não existem indicadores operacionais específicos para monitorar o desempenho da manutenção corretiva do pasteurizador. Parâmetros fundamentais, como o MTTR, o MTBF, o índice de reincidência de falhas e a taxa de cumprimento da manutenção planejada, não são acompanhados, o que impossibilita qualquer avaliação sistemática da performance do setor e limita o embasamento para decisões gerenciais. Há, portanto, uma grande oportunidade para implantar indicadores de desempenho que permitam não apenas medir a eficiência das intervenções, mas também gerar dados para análises preditivas e planejamento de ações

definir um estoque mínimo estratégico e organizar ferramentas específicas em kits dedicados à manutenção do pasteurizador.

POR QUE?

pois o estoque de peças críticas é reduzido, e não há um almoxarifado de manutenção próximo ao local onde o serviço

ocorre, obrigando os técnicos a deslocamentos constantes

para buscar peças ou ferramentas em outros locais, o que

aumenta o tempo de máquina parada. Como melhorias,

destaca-se a necessidade de mapear a criticidade das peças,

Revela que o propósito do processo é restabelecer rapidamente o funcionamento do pasteurizador, evitando paradas prolongadas que impactem negativamente a produção e gerem prejuízos econômicos, além de assegurar a segurança alimentar e a integridade do produto processado. Contudo, a forma como o processo ocorre atualmente não atende plenamente a esses objetivos, pois mantém o ciclo vicioso de falhas recorrentes, tempo elevado de máquina parada e perda de confiança por parte da equipe produtiva.

- Aplicar a análise SWOT:

Ambiente Interno	Ambiente Externo		
Forças	Oportunidades		
Conhecimento técnico prático de operadores experientes.	Possibilidade de implantação de ferramentas de gestão como BPM, BPMN e 5W2H.		
Coordenação em buscar melhorias.	Integração com softwares de manutenção.		
Capacidade instalada suficiente para atender a demanda.	Incentivos a treinamentos técnicos pelo SENAI programas setoriais.		
Fraquezas	Ameaças		
Ausência de plano de manutenção preventiva estruturado.	Rotatividade de mão de obra qualificada.		
Baixo registro histórico de falhas e intervenções.	Falhas no pasteurizador impactam diretamente a segurança alimentar e o cumprimento de norma: do MAPA e ANVISA.		
Falta de indicadores como MTTR e MTBF.	Pressão por produtividade pode inviabilizar paradas planejadas.		
Baixa capacitação técnica contínua.	A obsolescência de equipamentos pode elevar o custos de manutenção corretiva e dificultar a reposição de peças.		
Comunicação informal entre setores.	Mudanças frequentes na legislação sanitária e regulatória podem exigir adaptações imediatas nos processos de manutenção.		

- Identificar melhorias e construir o plano de ação:

O quê (What)	Por quê (Why)	Onde (Where)	Quando (<i>When</i>)	Quem (Who)	Como (How)	Quanto custa (How much)
Criar Procedimentos Operacionais Padrão (POPs) para manutenção	Padronizar rotinas, reduzir erros e garantir conformidade com normas	Setor de manutenção	1ª quinzena de novembro	Coordenador de manutenção, com apoio dos técnicos	Levantamento das rotinas atuais e documentação conforme boas práticas	Baixo custo (uso de recursos internos)
Implantar cronograma básico de manutenções preventivas e inspeções	Reduzir falhas inesperadas e melhorar a confiabilidade dos equipamentos	Linha de produção / pasteurizador	2ª quinzena de novembro	Coordenador de manutenção	Planejamento mensal com base no histórico e nas recomendações dos fabricantes	Baixo custo
Definir responsáveis por cada etapa do processo de manutenção	Aumentar a eficiência e a responsabilidad e na execução das tarefas	Setor de manutenção	2ª quinzena de novembro	Coordenação técnica e RH	Atribuição formal de funções e comunicação à equipe	Sem custo
Capacitar os técnicos com foco nas falhas mais recorrentes	Melhorar a capacidade de resposta e reduzir reincidência de falhas	Internamente ou via parceria (ex: SENAI)	Dezembro	Coordenação técnica	Treinamento prático e teórico com foco em falhas críticas	Médio custo (dependendo de parcerias)
Implantar controle via planilhas para registro de falhas, manutenções e indicadores (MTTR, MTBF, disponibilidade)	Acompanhar o desempenho da manutenção e embasar decisões futuras	Setor de manutenção	Início em dezembro, com uso contínuo	Técnico responsável + coordenador	Planilhas compartilhadas e rotina semanal de atualização	Baixo custo

REFERÊNCIAS

BISSON, Paulo Roberto. **Gestão da manutenção**: princípios e práticas. 1. ed. Rio de Janeiro: Elsevier, 2017.

LACERDA, Vânia Lúcia Alves. Prevenção e correção de defeitos na produção de leite e derivados. **EPAMIG**, v. 38, n. 299, p. 1-104, 2017. Disponível em: https://www.livrariaepamig.com.br/wp-content/uploads/2023/02/IA-299.pdf. Acesso em: 01 jun. 2025.

SILVA FILHO, Luciano Costa da *et al*. Gestão da manutenção na indústria 4.0. **Revista Mythos**, v. 3, n. 1, p. 1-10, 2021. Disponível em: https://periodicos.unis.edu.br/mythos/article/view/518. Acesso em: 01 jun. 2025.

