

Conectando Saberes: Conhecimentos interdisciplinares aplicados em desafios de torneios de Robótica

Charlotte Christine Siqueira Araujo | charlotte.csa18@aluno.ifsc.edu.br Érika Machado | erika.m09@aluno.ifsc.edu.br Laryssa de Campos Bertulino | Laryssa.cb17@aluno.ifsc.edu.br Adriana Salvador Zanini | adriana.zanini@ifsc.edu.br Taynara Cerigueli Dutra | taynara.dutra@ifsc.edu.br

RESUMO

A robótica educacional tem se consolidado como estratégia capaz de integrar teoria e prática, promovendo aprendizagem interdisciplinar em STEM. Este estudo descreve uma experiência pedagógica de ensino, pesquisa e extensão, desenvolvida no ensino técnico integrado, baseada em metodologias ativas e aprendizagem por projetos. O projeto envolveu planejamento, capacitação e exploração de conteúdos pelos alunos, que construíram e programaram robôs, desenvolveram estratégias próprias e aplicaram desafios pedagógicos com estudantes do Projeto PartiulF, do 9º ano de escolas de Caçador, em aulas complementares de física e matemática no IFSC. As atividades estimularam autonomia, resolução de problemas e trabalho colaborativo, permitindo a integração de conceitos teóricos com situações práticas. Os resultados evidenciaram aumento da motivação, da compreensão conceitual e do desenvolvimento de competências como raciocínio lógico, criatividade, comunicação e colaboração. A experiência demonstra o potencial da robótica como ferramenta de engajamento e aprendizagem significativa, aproximando conteúdos acadêmicos da realidade dos alunos e promovendo protagonismo estudantil.

Palavras-chave: robótica educacional; aprendizagem interdisciplinar; STEM; apredizagem por projetos;

1 INTRODUÇÃO

O modelo educacional tradicional, muitas vezes segmentado em disciplinas isoladas, pode criar uma barreira entre o conteúdo ensinado em sala de aula e a sua aplicabilidade no mundo real. Essa desconexão é um problema pedagógico relevante, pois pode levar à diminuição do interesse dos alunos e à dificuldade na compreensão de conceitos abstratos. Diante desse cenário, metodologias que promovem a aprendizagem ativa e a interdisciplinaridade, como a robótica educacional, apresentam-se como alternativas promissoras.

A robótica educacional pode se destacar como uma prática integradora dentro da abordagem STEM, ao unir ciência, tecnologia, engenharia e matemática em experiências de aprendizagem significativas. Por meio da construção e programação de robôs, os estudantes aplicam conceitos teóricos de forma concreta, explorando princípios físicos, matemáticos e computacionais em situações reais de resolução de problemas. Segundo Petry (2023), a robótica no ensino contribui para a motivação e o desenvolvimento de potencialidades em matemática, ao permitir que os alunos apliquem conceitos abstratos em contextos práticos. Já Castro *et al.* (2024) destacam que a robótica atua como uma ferramenta de aprendizagem capaz de estimular a autonomia, o raciocínio lógico e o pensamento crítico dos estudantes.

A hipótese deste projeto é que, ao engajar os alunos nesse processo criativo e interdisciplinar, é possível ampliar a compreensão dos conteúdos e, simultaneamente, desenvolver competências como raciocínio lógico, pensamento crítico, criatividade e colaboração. Este trabalho, portanto, justifica-se pela necessidade de explorar e validar abordagens pedagógicas que tornem o aprendizado mais significativo. Este projeto foi estruturado para colocar os alunos como protagonistas de seu processo de aprendizagem, utilizando a tecnologia como uma ponte entre a teoria e a prática.

2 METODOLOGIA

A metodologia deste projeto foi estruturada em etapas que valorizam o protagonismo dos alunos, com os professores atuando como mentores e mediadores do processo. O desenvolvimento seguiu uma abordagem prática e colaborativa, fundamentada na integração dos conhecimentos STEM (Ciência, Tecnologia, Engenharia e Matemática) por meio da robótica educacional.

2.1 Planejamento inicial

Nesta etapa, realizou-se o alinhamento dos objetivos, das atividades e do cronograma junto .aos participantes. As tarefas foram distribuídas entre os alunos, de modo a contemplar diferentes habilidades e interesses, estimulando o trabalho em equipe e a corresponsabilidade no desenvolvimento do projeto.

2.2 Capacitação e desenvolvimento

Os alunos realizaram um levantamento dos conceitos fundamentais de ciência, tecnologia, engenharia e matemática (STEM) relevantes aos desafios de robótica. Também

pesquisaram o funcionamento dos kits, explorando manuais e recursos disponíveis, e desenvolveram estratégias próprias de construção e programação dos robôs. Durante esse processo, foram incentivados a testar suas ideias na prática, promovendo a aprendizagem ativa e a resolução de problemas reais.

Além disso, os grupos investigaram os principais torneios e tipos de desafios de robótica, ampliando a compreensão sobre a aplicação desses conhecimentos em contextos educacionais e competitivos.

2.3 Proposição de atividades pedagógicas

Nesta etapa, os alunos foram incentivados a elaborar propostas de atividades que utilizassem os desafios de robótica como ferramentas de ensino-aprendizagem integradas aos conteúdos STEM. Uma das atividades propostas consistiu na dinâmica experimental de cálculo da velocidade média de um robô, aplicada aos alunos do programa PartiulF do campus Caçador..

2.3.1 Metodologia da dinâmica experimental – aplicação da atividade proposta

Para possibilitar o contato direto dos alunos com os robôs, foi elaborada uma atividade prática utilizando cinco robôs, cinco fitas crepe, cinco trenas, cinco cronômetros digitais (celulares) e duas salas de aula. A turma foi dividida em duas equipes: a Equipe 1 realizou inicialmente atividades teóricas sobre velocidade média, enquanto a Equipe 2 realizou o experimento prático com os robôs. Em seguida, as equipes trocaram de atividades, garantindo que todos participassem tanto da prática quanto da teoria.

No experimento, cada equipe foi subdividida em grupos, e cada grupo ficou responsável por um robô. Primeiro, determinaram-se as distâncias a serem percorridas, depois calcularam a velocidade média para três programas distintos (A, B e C), configurados com diferentes velocidades. O tempo de percurso foi medido com cronômetros digitais, e os resultados foram registrados em tabelas, utilizando as fitas crepe como pontos de partida e chegada.

A dinâmica integrou conceitos de física, matemática e programação, estimulando raciocínio lógico, aplicação de conceitos teóricos e desenvolvimento de competências colaborativas, além de possibilitar a comparação da motivação e do engajamento dos alunos antes e depois da atividade prática.

2.4 Validação e reflexão

As atividades desenvolvidas foram testadas em simulações e ajustadas. Posteriormente, foram validadas junto a outros grupos de alunos e docentes, promovendo a troca de experiências e o aperfeiçoamento das propostas.

Até o momento, foram concluídos os levantamentos conceituais e as experimentações preliminares, cujos resultados estão sendo sistematizados para uma análise final.

2.5. Avaliação e sistematização dos resultados

Realização de sessões de feedback e reflexão coletiva, nas quais os participantes discutirão os impactos das atividades de robótica na aprendizagem interdisciplinar. Ao final,

será elaborado um relatório consolidando as experiências, aprendizados e sugestões de aprimoramento do projeto, bem como, trabalhos futuros

3 RESULTADOS

O projeto foi desenvolvido conforme o planejamento, envolvendo levantamento conceitual, proposição de atividades pedagógicas, experimentações práticas com robôs e validação das propostas junto a outros alunos e professores. Durante a etapa de levantamento, os estudantes pesquisaram conceitos fundamentais de STEM e exploraram o funcionamento dos kits de robótica, desenvolvendo estratégias próprias de construção e programação dos robôs. Esta etapa permitiu identificar os conhecimentos prévios dos alunos e orientar a elaboração das atividades de forma contextualizada.

A dinâmica prática com os robôs constituiu uma etapa central do projeto, permitindo que os alunos aplicassem conceitos de velocidade média, distância e tempo. Nessa fase, cerca de 80% dos alunos se declararam muito motivados, e aproximadamente 85% relataram que os robôs ajudaram muito ou totalmente na compreensão dos conceitos. A atividade prática também favoreceu o trabalho em equipe, com quase 100% dos estudantes conseguindo colaborar efetivamente, e possibilitou superar dificuldades iniciais de cálculo e interpretação de fórmulas, relatadas por cerca de 20% dos alunos.

Além do experimento, a proposição de atividades pedagógicas e suas simulações permitiram aos alunos testar suas ideias, ajustar procedimentos e validar as atividades com outros grupos, promovendo reflexão crítica, troca de experiências e aperfeiçoamento contínuo. As observações indicam que mais de 80% dos alunos se interessaram por Ciências, Matemática e Tecnologia ao longo de todas as etapas do projeto, e desenvolveram competências como autonomia, raciocínio lógico, criatividade, comunicação e colaboração.

4 DISCUSSÕES

Os achados indicam que o projeto favoreceu uma aprendizagem ativa e interdisciplinar, integrando teoria e prática de forma consistente. A combinação de levantamento conceitual, elaboração de atividades, experimentação e validação possibilitou que os alunos compreendessem conceitos de STEM de maneira mais concreta e significativa.

O experimento com robôs evidenciou a eficácia das atividades práticas, tornando os conceitos mais tangíveis e promovendo maior engajamento dos estudantes. Ao mesmo tempo, o planejamento e a validação das atividades destacaram a importância do protagonismo estudantil e da aprendizagem baseada em projetos, fortalecendo habilidades de organização, comunicação, pensamento crítico e colaboração.

As dificuldades iniciais relacionadas a cálculos e interpretação de fórmulas foram minimizadas com o suporte dos monitores e pela prática direta com os robôs, demonstrando que a combinação entre experiência prática e reflexão teórica é essencial para a consolidação do aprendizado.

6 CONCLUSÕES

Este projeto cumpriu seus objetivos de forma ampla, demonstrando que a robótica educacional e a aprendizagem baseada em projetos são estratégias eficazes para o ensino de STEM. O experimento com robôs permitiu que cerca de 85% dos alunos compreendessem melhor conceitos de velocidade, tempo e distância, enquanto o desenvolvimento do projeto como um todo possibilitou a aquisição de competências adicionais, como planejamento, comunicação, autonomia e trabalho colaborativo.

Mais de 80% dos alunos relataram interesse crescente em Ciências, Matemática e Tecnologia, evidenciando o potencial do projeto para motivar estudantes em áreas STEM. A integração das etapas de levantamento conceitual, experimentação prática, proposição de atividades e validação consolidou o aprendizado interdisciplinar, tornando-o mais significativo, dinâmico e inclusivo. Para futuras aplicações, recomenda-se atenção à organização logística, comunicação eficiente e maior acompanhamento pedagógico, garantindo que todos os alunos possam vivenciar de forma completa todas as etapas do projeto.

REFERÊNCIAS

CASTRO, Steffane de Oliveira; SOUSA, Rutiely Miranda de; FREIRE, Thiago Paiva; IBIAPINA, Aricelma Costa; AQUINO, Simone Azevedo Bandeira de Melo. Robótica como ferramenta de aprendizagem: a experiência de uma aluna de computação como monitora de robótica para crianças do Ensino Fundamental. *In*: WORKSHOP SOBRE EDUCAÇÃO EM COMPUTAÇÃO (WEI), 32., 2024, Brasília/DF. **Anais** [...]. Porto Alegre: Sociedade Brasileira de Computação, 2024. p. 91-102. ISSN 2595-6175. Disponível em: https://sol.sbc.org.br/index.php/wei/article/view/29616. Acesso em: 15 out. 2025.

PETRY, Ednéia Leite. Robótica Educacional no Ensino Fundamental: Um caminho para a motivação e o desenvolvimento de potencialidades em matemática. *In:* XXVII Encontro Brasileiro de Estudantes de Pós-Graduação em Educação Matemática, 27., 2023, Vitória. **Anais** [...]. Vitória: Instituto Federal do Espírito Santo, 2023.