

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Desenvolvimento de um simulador de membro pélvico de cão por meio de impressão 3D para treinamento de exames de tomografia computadorizada

Vitória Schutz | vitoria.s2004@aluno.ifsc.edu.br Karen Borges Waltrick | karen.waltrick@ifsc.edu.br Marco Antonio Bertoncini Andrade | marco.bertoncini@ifsc.edu.br Ricardo Fernandes Bernardo | ricardofernandesbernardo@gmail.com

RESUMO

A pesquisa propõe o desenvolvimento de simulador anatômico de membro pélvico canino, por meio de impressão 3D, como alternativa de baixo custo para treinamento de exames de tomografia computadorizada. O simulador será desenvolvido utilizando materiais tecido-equivalentes e envolverá etapas de segmentação de imagens de TC, modelagem 3D, impressão das estruturas ósseas e montagem do simulador com propriedades compatíveis com os parâmetros de TC. O projeto busca oferecer uma solução prática, útil e acessível para instituições de ensino e clínicas veterinárias que queiram incrementar o treinamento técnico em exames de TC na avaliação de desvios angulares em cães, superando as limitações dos simuladores disponíveis comercialmente, como alto custo e dificuldades logísticas. Com o uso do simulador em treinamentos de TC espera-se contribuir com a formação dos estudantes e o aprimoramento da prática profissional, com a padronização dos exames e a melhoria da prática diagnóstica na radiologia veterinária.

Palavras-chave: impressão 3D; medicina veterinária; radiologia; tomografia computadorizada.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

1 INTRODUÇÃO

Este projeto descreve o desenvolvimento de um simulador anatômico de membro pélvico canino para treinamento em exames de tomografia computadorizada (TC), utilizando a tecnologia de impressão 3D como uma alternativa de baixo custo.

A TC é a técnica de imagem mais indicada para avaliar desvios angulares em cães (Andrade, 2022; Aper, 2005), pois oferece alta precisão na mensuração de ângulos anatômicos e mecânicos. A acurácia dessas mensurações, no entanto, depende do correto posicionamento do paciente, uma habilidade que pode ser aprimorada com o uso de simuladores anatômicos (Brühschwein, 2023).

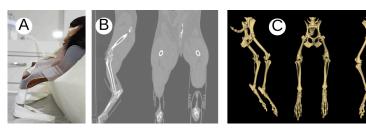
Apesar da importância desses simuladores para a formação e o aprimoramento profissional, há uma escassez de modelos específicos e acessíveis no mercado. A tecnologia de impressão 3D surge como uma solução viável para superar as limitações de custo dos simuladores comerciais, permitindo a criação de modelos anatômicos com alta fidelidade a partir de imagens de TC (Veneziani, 2018; Savi, 2024). O projeto propõe, portanto, o desenvolvimento de um modelo 3D, sua impressão com materiais tecido-equivalentes compatíveis com os parâmetros de TC e a verificação de sua usabilidade em treinamentos técnicos.

O projeto é uma resposta direta a uma demanda identificada em parceria com um médico veterinário radiologista durante a Unidade Curricular de Radiologia Veterinária no CST em Radiologia do IFSC. O trabalho, que integra ensino, pesquisa e extensão, busca oferecer uma solução inovadora e acessível para instituições de ensino e clínicas veterinárias, contribuindo para a formação prática de estudantes e a melhoria da prática diagnóstica na radiologia veterinária.

2 MÉTODO

Este trabalho é uma pesquisa aplicada, a ser desenvolvida no Laboratório de Manufatura Aditiva e Inovação em Saúde (LabMAIS) do Instituto Federal de Santa Catarina, Campus Florianópolis. A criação do simulador de membro pélvico canino será realizada nas seguintes etapas:

- 1. Definição dos requisitos: Identificação das especificações necessárias, como dimensões e posicionamento, e seleção da imagem tomográfica do banco de dados da clínica veterinária parceira (figura 1 A e B);
- 2. Segmentação das imagens: Utilização do software 3D Slicer para converter a imagem tomográfica em um modelo tridimensional digital, selecionando os pixels correspondentes aos tecidos a serem reproduzidos. A estrutura externa do simulador também será desenvolvida (figura 1 C e E);


Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

- 3. Ajuste e integração dos componentes: Com a estrutura externa e os ossos modelados digitalmente, serão utilizados softwares como Fusion 360 (Autodesk) e Meshmixer (Autodesk) para desenvolver um suporte interno que garanta o posicionamento correto das estruturas anatômicas;
- 4. Impressão das peças: As estruturas serão impressas em 3D, utilizando material ABS comum e radiopaco (XCT), nas impressoras K2 Plus (Creality) e Core H4 (GT Max) do LabMAIS;
- 5. Montagem do simulador: Os ossos serão fixados entre si e à estrutura externa, preparando o simulador para o preenchimento;
- 6. Preenchimento interno: O interior da estrutura será preenchido com poliuretano expansível flexível (caso simulador permita movimentação) ou água (caso seja estático);
- 7. Revestimento externo: Uma camada de borracha de látex pré-vulcanizada será aplicada para proteger o simulador, caso preenchimento seja de poliuretano.

Figura 1 – A) e B) correspondem à etapa 1; C) e D) correspondem à etapa 2.

Fonte: Autores, 2025.

3 RESULTADOS ESPERADOS E DISCUSSÕES

Este projeto visa desenvolver um simulador de radiologia veterinária que seja prático, útil e acessível, voltado para instituições de ensino e clínicas veterinárias.

Com o uso deste simulador em treinamentos, espera-se contribuir significativamente para a formação de estudantes e o aprimoramento da prática profissional, auxiliando na padronização de exames e melhorando o diagnóstico na radiologia veterinária.

O projeto demonstra o compromisso do IFSC com a inovação tecnológica na área da saúde, integrando de forma completa ensino, pesquisa e extensão: No âmbito do ensino, a pesquisa permite a aplicação prática de conhecimentos em impressão 3D, anatomia veterinária e técnicas de tomografia; Na extensão, oferece à sociedade um recurso didático útil, inovador e de baixo custo, que contrasta com os modelos caros

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

disponíveis no mercado. Essa abordagem apresenta uma alternativa viável e acessível para estabelecimentos que buscam aprimorar a qualidade de seus procedimentos.

O dispositivo proposto possui um caráter inovador significativo. Uma pesquisa recente em sites e plataformas comerciais de medicina veterinária não identificou simuladores de membros de cães semelhantes ao modelo desenvolvido. Essa originalidade confere ao projeto um potencial para o requerimento de patente, visando garantir sua proteção.

Este projeto ainda está em desenvolvimento. Adaptações podem ser realizadas de acordo com as demandas da instituição parceira e/ou feedback da equipe veterinária, objetivando fornecer um dispositivo que solucione problemas reais enfrentados no dia a dia de uma clínica veterinária de tomografia.

4 CONSIDERAÇÕES FINAIS

Este projeto se justifica pela necessidade de criação de um simulador de membro pélvico canino que atenda à finalidade de treinamento técnico em exames de TC, contribuindo para a formação prática dos estudantes e o aperfeiçoamento profissional na área.

Com o uso do simulador em treinamentos, espera-se gerar um impacto positivo tanto na formação profissional quanto na prática diagnóstica da radiologia veterinária, ampliando o alcance e a relevância social das pesquisas desenvolvidas no âmbito do ensino técnico e tecnológico.

REFERÊNCIAS

Andrade, Mario Candela et al. Patellar luxation and concomitant cranial cruciate ligament rupture in dogs—A review. **Veterinární medicína**, v. 67, n. 4, p. 163, 2022.

APER, Rhonda et al. Computed tomographic determination of tibial torsion in the dog. **Veterinary Radiology & Ultrasound**, v. 46, n. 3, p. 187-191, 2005.

Brühschwein, Andreas et al. Comparison of CT-measured angles of pelvic limbs without patellar luxation of six canine breeds. **Frontiers in veterinary science**, v. 10, p. 1194167, 2023.

Savi, M. et al. Step-by-step of 3D printing a head-and-neck phantom: proposal of a methodology using fused filament fabrication (FFF) technology. **Radiation Physics and Chemistry**, v. 223, p. 111965, 2024.

Veneziani, G. R. et al. **Development of phantom head using 3D printer and equivalent tissue material applied to veterinary medicine**. Associação Brasileira de Física Médica, Rio de Janeiro, RJ (Brazil), 2018.