

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Projeto de um sistema eletrificado de tomada de força para veículos de utilidades

André Felipe Venzon 1 | andre.venzon@mvpesolutions.com Eduardo Yuji Sakurada 2 | yuji@ifsc.edu.br Eduardo Antônio Linck3 | eduardo.linck@ifsc.edu.br Erwin Werner Teichmann4 | erwin@ifsc.edu.br Thiago Teixeira da Motta5 | thiago.motta@mvpesolutions.com

RESUMO

Este trabalho apresenta o desenvolvimento de um sistema eletrificado de tomada de força para veículos de servico, denominado ePTO (Electric Power Take-Off). Diferentemente dos sistemas tradicionais, que utilizam motores a combustão interna para transmitir potência aos sistemas auxiliares, a proposta substitui essa configuração por um conjunto formado por banco de baterias, inversor de frequência e motor elétrico de ímã permanente. Tal solução elimina a necessidade do motor a diesel para o acionamento do sistema, resultando em benefícios como redução no consumo de energia, menores custos de operação e manutenção, além da diminuição das emissões de poluentes e do nível de ruído. O foco da pesquisa concentrou-se no projeto do motor elétrico, desenvolvido pela MVP e-Solutions e construído nos laboratórios do Departamento Acadêmico de Metal Mecânica do IFSC, Câmpus Florianópolis. Após a construção e montagem, foram realizados testes em bancada hidráulica, nos quais o motor operou sem falhas, acionando uma bomba de engrenagens de tamanho nominal de 11 cm³/rot, que manteve pressão de 110 bar e velocidade de 2000 RPM. Os resultados obtidos demonstram a viabilidade técnica da solução e fornecem subsídios relevantes para melhorias em projetos futuros, com a perspectiva de alcançar pressões mais elevadas e atender a uma gama mais ampla de equipamentos.

Palavras-chave: eletrificação veicular; sistemas hidráulicos; motor elétrico; eficiência energética; inovação tecnológica.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

1 INTRODUÇÃO

Este projeto aborda a eletrificação de sistemas de tomada de força (PTO — *Power Take-Off*), tradicionalmente acionados por motores a combustão interna para transmitir potência a equipamentos hidráulicos. A proposta consiste no desenvolvimento de um sistema denominado ePTO (*Electric Power Take-Off*), que substitui o acionamento mecânico convencional por um motor elétrico de ímã permanente, controlado por inversor de frequência e alimentado por banco de baterias.

Inserido na área de eficiência energética, o trabalho integra o projeto de pesquisa "Eletrificação de Sistemas Hidráulicos Embarcados em Veículos de Utilidades — Tomada de Força", realizado em parceria com a empresa MVP e-Solutions, com a participação de docentes, técnicos e estudantes do IFSC, Câmpus Florianópolis.

O ePTO apresenta potencial tanto para aplicação em veículos elétricos e híbridos quanto na conversão de veículos com PTO convencional, promovendo modernização, economia de combustível, flexibilidade de controle e redução de emissões. Além disso, a substituição do sistema mecânico por um elétrico possibilita integração com tecnologias regenerativas e auxiliares, ampliando a sustentabilidade e o desempenho dos veículos.

2 DESCRIÇÃO DO SISTEMA

PTO é um mecanismo que permite a transferência de potência do motor do veículo para outro equipamento acoplado a ele, como um guindaste, cesto de elevação, escavadeira, entre outros, sendo frequentemente usado em veículos de serviço. A energia mecânica disponível na PTO vem do eixo acionado pelo motor a combustão e conecta-se por meio de um sistema que pode usar engrenagens, embreagens, correias ou correntes. O equipamento aciona um sistema hidráulico que permite que os veículos de serviço realizem uma variedade de tarefas, proporcionando potência mecânica e hidráulica para diferentes aplicações (MUNCIE,2025), atendendo necessidades de setores como a agricultura, construção, serviços públicos entre outros.

A eletrificação do sistema de PTO é uma solução com impactos ambientais e econômicos substanciais. A redução ou eliminação do tempo ocioso dos motores a diesel, bem como a redução do tamanho do motor, contribuem para a diminuição das emissões de carbono e de ruído, atendendo às normas ambientais e às demandas por operações urbanas mais silenciosas (JOFFREY,2021). Adicionalmente, a redução do ruído melhora a segurança e a comunicação entre a equipe, além de agradar aos residentes vizinhos às áreas de construção.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

3 PROCEDIMENTOS METODOLÓGICOS

O projeto ePTO foi desenvolvido pela empresa MVP e-Solutions, e conta com três etapas principais: pesquisa, fabricação e testes. Na primeira delas fez-se uma revisão bibliográfica a respeito do funcionamento dos sistemas PTO, sua possível eletrificação, aplicações viáveis, performance e consumo energético dos sistemas PTO presentes no mercado, comparações e um estudo prévio de payback.

A segunda etapa foi a fase de fabricação do motor elétrico e demais componentes da montagem mecânica do sistema. Utilizou-se dos laboratórios do câmpus do IFSC para os processos de usinagem convencional em tornos e fresadoras, máquinas CNC (Comando numérico computadorizado) de eletroerosão e Centro de Usinagem e outras ferramentas disponíveis para a concepção dos componentes necessários.

A fase de construção envolveu conhecimentos interdisciplinares relacionados com os processos de usinagem, soldagem, desenhos mecânicos, metrologia, GD&T (Dimensionamento e tolerância geométrica), CAD (Projeto assistido por computador) e CAM (Manufatura assistida por computador), gerando forte interação entre o grupo de professores, pesquisadores e alunos.

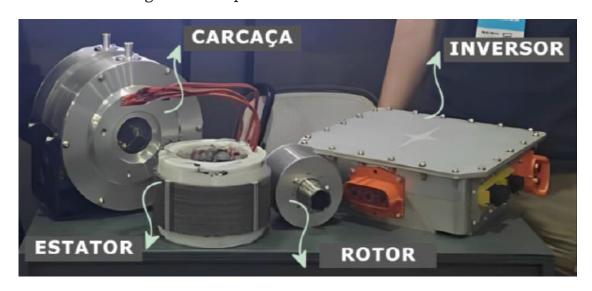
Na última etapa realizou-se a montagem e testes de funcionamento do protótipo. No Laboratório de Automação Hidráulica e Pneumática (LAHP-IFSC), verificou-se a capacidade do protótipo acionar um sistema hidráulico operando com pressão e vazão previamente estipuladas. Nessa etapa, os fundamentos envolvidos estavam relacionados aos conceitos de hidráulica e eletrônica, sendo necessário monitorar sinais como pressão e vazão de óleo e rotação do motor.

4 APRESENTAÇÃO DE RESULTADOS

Neste capítulo, são apresentados os principais resultados obtidos ao longo do desenvolvimento do trabalho. A exposição busca evidenciar os dados mais relevantes, relacionando-os com os objetivos inicialmente propostos.

4.1 Equipamentos desenvolvidos no projeto

A pesquisa mostrou que existe a possibilidade de utilizar o novo sistema ePTO para uma variedade de aplicações como plataforma/guincho, cesto aéreo, caminhão guindaste entre outros, pois a potência exigida é compatível com o que está sendo entregue pelo motor elétrico. Para aquelas aplicações que apresentam potência um pouco acima, o sistema também tem capacidade para atender, mas ficaria mais lento do que o original. A (Figura 1), apresenta alguns componentes do sistema ePTO fabricados neste projeto.



Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Figura 1 - Componentes do sistema ePTO

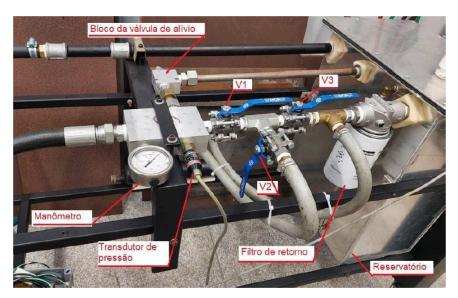
Fonte: Autores

A Figura 2 apresenta a bancada de testes montada onde é possível visualizar o banco de baterias, o inversor de frequências, o motor elétrico, a bomba hidráulica, o trocador de calor, o reservatório e o filtro de retorno. Por causa da perspectiva da imagem, não é possível visualizar de maneira clara o manômetro, a válvula de alívio e o transdutor de pressão.D

A bancada hidráulica foi desenvolvida especificamente para este projeto, onde foi instalada uma bomba de engrenagens com deslocamento volumétrico de 11 cm³/rot.

Figura 2 - Bancada de testes hidráulica.

Fonte: Autores


Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

A Figura 3 apresenta a disposição do manômetro, do transdutor de pressão e das válvulas V1, V2 e V3. Dependendo da configuração escolhida para o posicionamento das válvulas, pode-se operar com o sistema pressurizado, ou não, e selecionar a passagem pelo trocador de calor.

Figura 3 -Posicionamento do manômetro, do transdutor de pressão e das válvulas.

Fonte: Autores

Nos testes ocorridos até o momento, não ocorreram elevações significativas da temperatura do óleo, ficando em torno de 30 °C. Consequentemente, não se tem feito uso do trocador de calor, portanto a válvula V2 tem permanecido fechada.

4.2 Testes e simulações na bancada hidráulica

Nesta seção serão descritos os testes e simulações realizados na pesquisa. O teste do equipamento inicia com um aumento progressivo da rotação do motor com o sistema descarregando o óleo livremente para o reservatório. Nessa condição, o sistema iniciou a operação com baixa pressão (aproximadamente 10 bar).

Em uma dada velocidade, é feito um fechamento lento da válvula V1 (Figura 4). Consequentemente, tem-se um aumento de pressão do sistema que é acompanhado visualmente por um manômetro. Paralelamente, o transdutor de pressão envia os lidos de pressão para a placa eletrônica do Arduíno.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

4.2.1 Simulação computacional

Na simulação apresentada na Figura 4, o sistema mostra a válvula de alívio fechada, pois a pressão não foi suficiente para acioná-la. O manômetro neste momento indica uma pressão de 72,89 bar. Um fechamento maior da válvula V1, certamente, fará a pressão alcançar valores em torno de 100 bar e, consequentemente, parte da vazão de óleo fornecida pela bomba hidráulica será desviada pela válvula de alívio.

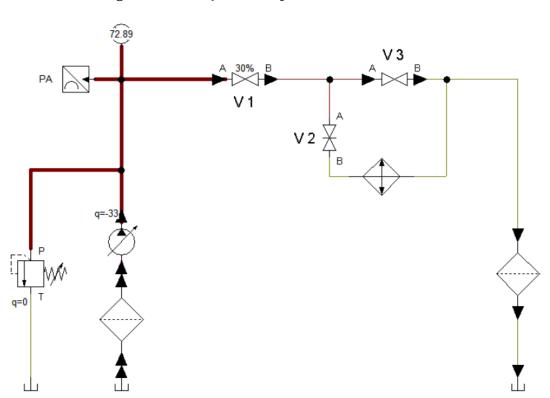


Figura 4 -Simulação do comportamento da bancada.

Fonte: Autores

Nos ensaios de controle de velocidade, o motor foi inicialmente acionado em 50 RPM sem carga, sendo gradualmente elevada para 100 RPM e, posteriormente, para 150 RPM. Durante esse processo, o ângulo de posição e a velocidade angular foram monitorados por meio do sensor resolver, que também forneceu os sinais de seno e cosseno correspondentes às diferentes condições de rotação. Em outro teste, a velocidade de referência foi ajustada para 400 RPM e observou-se que a velocidade medida oscilava em torno desse valor, demonstrando o acompanhamento adequado do sistema de controle.

No monitoramento da corrente elétrica, verificou-se que as correntes de fase apresentaram forma senoidal com defasagem de 120°, como esperado para este tipo de motor, sendo registrado valor de pico de aproximadamente 25 A para a fase A.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Adicionalmente, as correntes nos eixos direto e de quadratura (dq) mantiveram-se próximas às suas referências, com iD em torno de 0 A, devido ao controle aplicado ser o de velocidade e a rotação estar abaixo da nominal, enquanto iQ se estabilizou em valores próximos de 30 A.

Destaca-se que esses resultados foram obtidos nos testes iniciais realizados com o protótipo, em uma etapa em que ainda estavam sendo feitas calibrações e ajustes nos equipamentos e nos softwares de controle. Dessa forma, variáveis como pressão e rotação do motor, entre outras, ainda não se encontravam na condição nominal de projeto.

4.2 PTO tradicional vs ePTO

Um ponto chave que a eletrificação do sistema PTO visa atender diretamente é a economia de combustível, visto que essa é uma das variáveis que impactam diretamente nos gastos de um veículo. É possível estimar de forma aproximada o consumo anual de óleo diesel utilizado durante operações que exigem a tomada de força (PTO), e compará-lo com os custos associados a um sistema PTO eletrificado. Para simplificação, de cálculos, será considerado que o veículo opera predominantemente em marcha lenta.

Em um sistema ePTO, por sua vez, estima-se um menor consumo de energia. Para esta análise, considera-se uma potência de P=12 kW, que atende a diversas aplicações conforme pesquisas realizadas. Deve-se considerar-se ainda o fator de trabalho (ϕ), esse fator é baixo, pois o sistema só consome energia quando está em operação. Estima-se que, para aplicações de ePTO, o fator de trabalho seja de aproximadamente 10%.

No Quadro 1, apresentam-se valores comparativos dos custos anuais envolvidos durante a operação de um sistema PTO tradicional em relação a um sistema ePTO. Foram considerados turnos diários de 12 horas, durante 365 dias, para ambos os casos.

Nesta análise está sendo considerado apenas o gasto de energia consumida pela operação da PTO, não levando em conta o desgaste e danos gerados ao motor diesel pelo seu uso prolongado em marcha lenta [3].

Considerou-se que uma hora de operação em marcha lenta, um veículo de serviço consome aproximadamente 1 litro de diesel.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Tabela 1 — Comparação de consumo entre sistema PTO tradicional e ePTO.

Parâmetro	Sistema diesel	Sistema ePTO
Consumo por hora	1 litro/hora	1,2 kWh/hora
Horas de operação por dia	12 horas	12 horas
Dias de operação por ano	365 dias	365 dias
Horas de operação por ano	4380 horas	4380 horas
Consumo anual	4380 litros	5356 kWh
Preço unitário	R\$ 5,94 / litro	R\$ 0,59 / kWh
Custo anual	R\$ 26.017,00	R\$ 3.101,04
Potência	1 litro/hora	12 kW
Fator de trabalho	N/A	10%
Consumo por hora	N/A	1,2 kWh/hora

Fonte: Autores

5 CONCLUSÕES

Os testes realizados demonstraram que o motor elétrico operou com sucesso, sem falhas de funcionamento. Na bancada hidráulica, o sistema atendeu às especificações projetadas, atingindo a pressão máxima de 110 bar e uma vazão de até 33 litros por minuto. O banco de baterias, projetado pela MVP e-Solutions, operou de forma eficaz, atendendo às exigências de potência e energia do sistema, com o suporte do sistema de gerenciamento de baterias (BMS) da MVP, garantindo a proteção das células.

O inversor de frequência, um produto já validado MVP e-Solutions, teve o desempenho esperado, permitindo o controle preciso do motor nas condições de operação desejadas. Um dos principais aprendizados foi que o banco de baterias, propositalmente superdimensionado, possibilitou o entendimento completo das demandas energéticas do sistema, sinalizando que, para futuras aplicações, uma bateria de menor porte pode ser considerada. Também foi observado que o uso de uma bomba com deslocamento volumétrico menor, aproximadamente 6 cm³/rotação em vez da atual de 11 cm³/rotação, permitiria alcançar pressões mais altas, próximas de 200 bar, o que seria fundamental para abranger um maior número de aplicações.

Conclui-se que o projeto foi bem-sucedido e alcançou os objetivos propostos. Os resultados forneceram uma base sólida para futuras melhorias e avanços no desenvolvimento de sistemas hidráulicos acionados eletricamente.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

REFERÊNCIAS

MUNCIE POWER PRODUCTS. Understanding Power Take-off Systems. [Online]. Disponível em:

https://www.munciepower.com/cms/files/Products/Literature/Documents/Training/TR-G94-01.pdf?ver=a5TU6GguWxhP2Zrv. Acesso em: 08 maio 2025.

B. Jouffrey, Electric Power Take-Off (ePTO), Parker Hannifin Corporation, White Paper, Feb. 2021. [Online]. Disponível em: https://discover.parker.com/ePTO . Acesso em 12 de maio de 2025.

NORMAN, Andrew; CORINCHOCK, John. Diesel Technology: Fundamentals, Service, Repair. 8. ed. Tinley Park, II: The Goodheart-Willcox Company, Inc., 2016. 640 p.