

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

NANOPARTÍCULAS MAGNÉTICAS DE ÓXIDO DE FERRO RECOBERTAS POR POLIETILENO GLICOL E POR KAPPA CARRAGENA

Julia Silva Baldin Costa | julia.sbc11@aluno.ifsc.edu.br Mundo Park | mundo.p@aluno.ifsc.edu.br Alexandre D'Agostini Zottis | adz@ifsc.edu.br Marcel Piovezan | marcel.piovezan@ifsc.edu.br Tula Beck Bisol | tula.bisol@ifsc.edu.br

RESUMO

Recursos marítimos biológicos, tais como bactérias, microalgas, macroalgas e invertebrados têm sido amplamente estudados pelo seu grande potencial biotecnológico para atuar em diversas áreas da indústria e do mercado. Esses biomateriais podem ser utilizados como substitutos das alternativas sintéticas que dependem de recursos não renováveis. A carragena (KA), um biopolímero extraído da alga vermelha Kappaphycus alvarezii, é um candidato promissor para ocupar o lugar de polímeros sintéticos provenientes de petróleo e derivados, como o polietilenoglicol (PEG) ou o poli(metilmetacrilato), principalmente no contexto de recobrimento de nanomateriais. O presente trabalho tem como objetivo produzir nanopartículas superparamagnéticas de óxido de ferro (SPION), que são o destaque do nosso grupo de pesquisa NANOTEC (@nanotecgroup), recobrí-las com PEG e KA, caracterizar e comparar os resultados associados às suas propriedades para aplicações biomédicas futuras. A caracterização para identificação dos grupos químicos dos dois materiais recobridores das SPIONs foi realizada pela análise do espectro de infravermelho (FT-IR) por pastilhas de KBr. Já para análise morfológica e medida do tamanho das SPIONs foi feito por microscopia eletrônica por transmissão (MET). Os resultados obtidos na síntese dessas SPIONs por KA e PEG foram bem sucedidos, pois atenderam aos resultados evidenciados na literatura especializada. Uma vez que foi possível identificar o comportamento superparamagnético das duas amostras (diâmetro médio do núcleo das nanopartículas abaixo de 15 nm). Esta pesquisa está sendo desenvolvida com recursos provenientes dos projetos FAPESC 2024 Universal concomitantemente com a participação de (04) quatro alunos de iniciação científica dos projetos de extensão PROEX 2025 e projeto universal IFSC 2025.

Palavras-chave: Nanotecnologia; recursos marítimos; Coprecipitação. SPION, Kappahycus alvarezii

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

1 INTRODUÇÃO

As nanopartículas superparamagnéticas de óxido de ferro (SPIONs) têm sido bastante estudadas para em ensaios biológicos in vitro em células tumorais. É importante que o recobrimento seja estável, biocompatível e não citotóxico para que ela possa ser utilizada nesses experimentos. A carragena (KA), um biopolímero extraído da alga vermelha *Kappaphycus alvarezii*, é um candidato promissor para ocupar o lugar de polímeros sintéticos provenientes de petróleo e derivados, como o polietilenoglicol (PEG) ou o poli(metilmetacrilato), principalmente no contexto de recobrimento de nanomateriais. O presente trabalho tem como objetivo produzir nanopartículas superparamagnéticas de óxido de ferro (SPION), que são o destaque do nosso grupo de pesquisa NANOTEC (@nanotecgroup), recobrí-las com PEG e KA, caracterizar e comparar os resultados associados às suas propriedades para aplicações biomédicas futuras.

2 METODOLOGIA

2.1 Reagentes

Os materiais utilizados foram carragena (KA), polietileno glicol (PEG), FeCl₂·4H₂O (1,85 mmol), FeCl₃·6H₂O (3,70 mmol), soluções de NH₄OH (27%), HCl (1,0 mol/L) e água deionizada.

2.2 Método

Foram feitas duas sínteses, sendo uma delas de SPIONs recobertas com PEG na proporção 5:1 (PEG:Fe3+), denominada PEG05 e a outra recoberta com KA na proporção 1:5 (KA:Fe3+) como KA01. O procedimento, em ambos casos, foi realizado utilizando o método de coprecipitação ex-situ (ZOTTIS, 2015). Nessa metodologia, foram preparadas soluções ácidas (1 a 2 mL de HCl 1,0 mol/L) de FeCl2·4H2O (1,85 mmol) e FeCl3·6H2O (3,70 mmol) na proporção de 0,5:1, que foram despejadas em um balão de fundo chato de 4 bocas, juntamente com 100 mL de água. Em seguida, o sistema foi aquecido a 90°C em uma chapa de aquecimento sob agitação e então foi gotejado 20 mL de amônia (27%). 40 segundos após a adição completa da amônia, foram colocadas as soluções dos respectivos recobrimentos em cada síntese usando 18,5 mmol de PEG e 1,0 mmol de KA. A purificação das amostras (PEG05 e KA01) foi feita por decantação magnética, onde foram posteriormente mantidas em estufa overnight a 55°C para serem secas.

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

3 RESULTADOS E DISCUSSÕES

A caracterização foi realizada pela análise do espectro de infravermelho (FT-IR) por pastilhas de KBr, onde procurou-se obter informações a respeito do grupo químico para PEG05 e KA01. Na tabela 1 estão listados os valores obtidos em comparação com a literatura (PERÉZ, et al. 2023) e (BARDAJEE, et al. 2013). De acordo com os valores da tabela, pode-se notar que a amostra de PEG05 não apresenta bandas de C-H nem de C-O. Isso pode ser resultante de uma baixa concentração de PEG, sendo insuficiente para a detecção do infravermelho. As análises por microscopia eletrônica por transmissão (MET) com recobrimento usando carragena exibiu (Fig.2) diâmetro médio de 5,0 nm (KA01) e em outra amostra (Fig.3) 10,0 nm (PEG05), respectivamente.

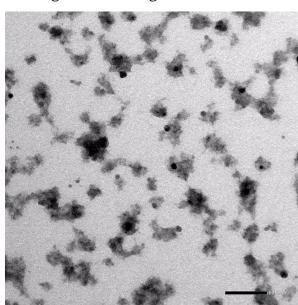
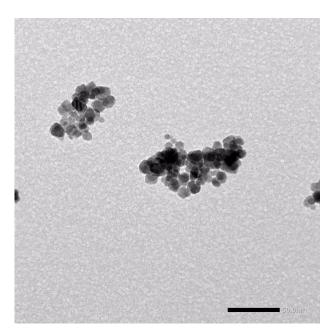


Figura 1 - Micrografia MET KA01


Fonte: imagem cedida pelo LCME-UFSC

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

Figura 2 - Micrografia MET PEG05

Fonte: imagem cedida pelo LCME-UFSC

Tabela 1 — Valores experimentais e teóricos do infravermelho em cm⁻¹

Amostras	О-Н	C-O	C-H	Fe-O
Bandas teóricas SPION	-	-	-	580
Amostra de SPION	3129,3	-	-	588,2
Bandas teórica SPION@KA	3600	1220	-	655
Amostra de KA01	3129,98	1401,01	-	579,49
Bandas teórica PEG	3415	~1200	2915	580
Amostra de PEG05	3421	-	-	590,24

Fonte: Dados autorais (2025), PERÉZ, et al. (2023) e BARDAJEE, et al. (2013).

Planeta Água: a cultura oceânica para enfrentar as mudanças climáticas no meu território

REFERÊNCIAS

ZOTTIS, A. D.Z et al. Pheomelanin-coated iron oxide 1.magnetic nanoparticles: a promising candidate for negative T2 contrast enhancement in magnetic resonance imaging. Chem. Commun., 2015. Disponível em: https://doi.org/10.1039/c5cc02536b.

PERÉZ, D.L. et al. Synthesis of superparamagnetic iron oxide nanoparticles coated with polyethylene glycol as potential drug carriers for cancer treatment. J Nanopart Res (2024) Disponível em: https://doi.org/10.1007/s11051-023-05900-5.

BARDAJEE, G.R., et al. Kappa carrageenan-g-poly (acrylic acid)/SPION nanocomposite as a novel stimuli-sensitive drug delivery system. *Colloid Polym Sci*,(2013).Disponível em: https://doi.org/10.1007/s00396-013-3018-6.

Agradecimento especial ao IFSC, a FAPESC e a PROEX pela oportunidade de realizar esse projeto. E ao LCME-UFSC pelas análises de MET-120 kV.