22ª Semana Nacional de ciência e tecnologia

Planeta Água: a cultura oceánica para enfrentar as mudanças climáticas no meu território

Estudo de Perdas Pelo Efeito Joule Em Instalações Elétricas Residenciais

Adilson Pacheco Bortoluzzi – adilson.bortoluzzi@ifsc.edu.br Saimon Miranda Fagundes – saimon.fagundes@ifsc.edu.br Lucas Varelo Pereira – lucasp11@aluno.ifsc.edu.br Adriel Allebrandt Eleuterio – adriel.e2003@aluno.ifsc.edu.br -

RESUMO

A eficiência energética em sistemas de iluminação depende não apenas da escolha das lâmpadas, mas também do correto dimensionamento dos condutores elétricos. Um dos principais problemas observados em instalações elétricas é a ocorrência de perdas por efeito Joule, causadas pela resistência dos condutores, especialmente quando mal dimensionados. A metodologia utilizada inclui medições práticas com instrumentos elétricos básicos e análise comparativa dos resultados com dados calculados. O presente projeto concentra-se na análise das perdas por efeito Joule em circuitos de iluminação, utilizando condutores de diferentes bitolas em condições controladas. O objetivo é estudar a influência da seção transversal dos condutores nas perdas joules.

Até que ponto o dimensionamento inadequado da bitola dos condutores em circuitos de iluminação influencia nas perdas de energia por efeito Joule, comprometendo a eficiência energética de uma instalação elétrica? Qual a relação entre a bitola do condutor e a resistência elétrica total do circuito? Quanto de energia é dissipada na forma de calor (efeito Joule) em condutores de diferentes seções transversais? Qual é a diferença de rendimento energético entre circuitos com condutores corretamente dimensionados e subdimensionados? Existe um ponto de equilíbrio entre eficiência energética e custo-benefício no uso de condutores com maiores bitolas? O aumento da seção do condutor reduz as perdas de energia elétrica, mas há um limite em que o ganho de eficiência não compensa o custo adicional do cabo. A principal base científica é a Lei de Joule, que descreve a transformação de energia elétrica em energia térmica devido à resistência dos condutores, expressa pela fórmula:

 $P = R \times I^2$ Onde:

P é a potência dissipada (em watts), I é a corrente elétrica (em ampères), R é a resistência elétrica do condutor (em ohms).

Palavras-chave: Dimensionamento de condutores, Eficiência energética. instalações elétricas residenciais

ESTUDO TEÓRICO

O projeto se encontra atualmente na fase de cálculos teóricos onde com a ajuda do Excel foi desenvolvida uma planilha de simulação onde é possível, com a inserção de dados do projeto tipo: bitola do condutor, comprimento, carga e custos, calcular as perdas joules nos condutores e fazer um comparativo "custo X benefício" em diversas situações reais.

TABELA 1- Planilha de simulação

ESTUDO DE PERDAS PELO EFEITO JOULE EM INSTALAÇÕES ELÉTRICAS RESIDENCIAIS								
Bitola do fio	Material	Resistividade	Comprimento	Resistência	Tensão	Carga	Corrente	Perdas
(mm2)	(Al/Cu)	(Ω.m)	(m)	(Ω)	(V)	(VA)	(A)	(W)
1,5	Cobre (Cu)	0,00000017	30	0,68	220	3000	13,636	126,446
2,5	Cobre (Cu)	0,00000017	30	0,408	220	3000	13,636	75,868
Horas de uso dia (h)	Custo kW/h (R\$)	Gasto mensal perdas (R\$)	Custo fio (R\$/m)	Valor total fio (R\$)	Anos	Custo perdas (R\$)	TOTAL (R\$)	
2	1	7,587	1,5	90	2	182,083	272,08	
2	1	4,552	2,35	141	2	109,25	250,25	

É possível observar na simulação acima que o condutor de 2,5 mm² apesar de ter um custo maior na aquisição, considerando a carga, o tempo de uso e demais fatores envolvidos, após um período de dois anos o custo dele ficou menor que o condutor de 1,5mm².

REFERÊNCIAS

CHAVES, C. C. Dimensionamento Econômico de Condutores Aplicados a Instalações Elétricas em Baixa Tensão: Um Estudo de Casos. Revista de Engenharia e Tecnologia. Pag 137, 2019.

CREDER, Hélio, Instalações Elétricas, LTC, 2007.

D. P. BERNARDON, L. COMASSRETO, L. N. CANHA, A. R. ABAIDE. Perdas Técnicas e Comerciais de Energia Elétrica em Sistemas de Distribuição. IEEE. S.d.

D'AVILA, R. S.; BURANI, G. F.; GRIMONI, J. A. B. **Análise de Perdas em Instalações Elétricas Residenciais.** SNPTEE, Rio de Janeiro, 2007.

