DEGRADAÇÃO LIGNOCELULÓSICA POR HIDRÓLISE ENZIMÁTICA VISANDO A PRODUÇÃO DE ETANOL

LUIZ FELIPE DE MORAIS COSTA DE JESUS

Universidade Estadual Paulista (UNESP), mestrando em Biotecnologia, Instituto de Química de Araraquara. Ifmoraess21@gmail.com

LAYANE ALVES FERREIRA

Universidade Federal do Tocantins (UFT), graduada em Engenharia de bioprocessos e biotecnologia, Campus Gurupi.

layanne-amanda@hotmail.com

CARLOS ROBERTO PORTO DECHANDT

Universidade Federal do Mato Grosso (UFMT), Doutor em Bioquímica, Campus Cuiabá. carlos.dechandt91@gmail.com

RESUMO

Com a demanda crescente por tontes alternativas de biocombustíveis devido a escassez dos combustíveis fósseis, tem-se percebido muitos estudos buscando novas alternativas renováveis e de baixo custo para produção de etanol. O etanol produzido a partir de material lignocelulósico é uma boa alternativa, uma vez que não está relacionado à polêmica "food versus fuel" e também devido a capacidade de utilização completa dos materiais na obtenção de um produto. Esta ideia nos remete ao conceito de biorrefinarias, uma vez que garante a viabilidade econômica e ambiental do processo. No entanto, a produção de etanol de segunda geração exige alta complexidade tecnológica. Assim, há algumas etapas adicionais quando se utiliza materiais lignocelulósicos para obtenção de etanol, são necessários o pré-tratamento e a hidrólise, que são etapas essenciais. Deste modo, o presente artigo propõe uma revisão da degradação lignocelulósica por hidrólise enzimática para produção de etanol.

PALAVRAS-CHAVE

Biorrefinarias Biocombustíveis Pré-tratamento

INTRODUÇÃO

Com o desenvolvimento industrial dos países desenvolvidos e subdesenvolvidos no último século, bem como com o crescimento da população mundial, um grande aumento no consumo de energia está sendo observado atualmente (HENDRIKS; ZEEMAN, 2009). Deste modo, juntamente com o esgotamento das reservas energéticas provenientes de combustíveis fósseis, com o aumento significativo no custo destes e emissões de gases poluentes advindos da queima destes combustíveis, tem-se notado um grande interesse por novas alternativas de combustíveis renováveis e não poluentes (HENDRIKS e ZEEMAN, 2009). Atualmente, houve um grande avanço nos estudos sobre produção de etanol de segunda geração, como forma de diminuir a dependência do petróleo e com isso aumentar a matriz energética. Nesse contexto, o etanol lignocelulósico ou de segunda geração pode ser uma alternativa potencial, principalmente devido ao baixo custo de produção e a não competição com alimentos, uma vez que são utilizados os resíduos agrícolas, florestais e industriais (KHARE; PANDEY; LARROCHE, 2015).

O termo "lignocelulósico" de acordo com Brown (1999) é utilizado para descrever os principais constituintes encontrados na maioria dos vegetais, ou seja, a celulose, hemicelulose e a lignina, cuja composição não depende somente do tipo de vegetal, mas também das condições de crescimento, época de colheita, entre outros.

A produção de etanol a partir de resíduos agroindustriais, é uma das alternativas mais importantes para a produção de combustíveis renováveis. Por isso, diferentes tecnologias de pré-tratamento, hidrólise e fermentação vêm sendo a cada dia mais estudadas, pois deste modo será possível demonstrar a viabilidade deste processo (LU, et al., 2002; SOCCOL et al., 2010).

Deste modo, o presente artigo de revisão traz uma abordagem dos materiais lignocelulósicos (celulose, hemicelulose e lignina), descrevendo alguns prétratamentos utilizados na degradação da biomassa lignocelulósica com ênfase na hidrólise enzimática envolvendo as principais enzimas envolvidas assim como a sua composição química, para produção de etanol de segunda geração.

MATERIAIS E MÉTODOS

O presente trabalho teve com principal metodologia a revisão de literaturas existentes relacionadas ao objetivo do artigo de revisão. Foram escolhidas quatro bases de dados para a pesquisa (Scielo, Google Schoolar, Science Direct e PubMed). Para melhor definição dos termos de busca nas bases selecionadas, foram utilizadas palavras-chaves como etanol, material lignocelulósico, biocombustíveis, canade-açúcar, hidrólise enzimática, dentre outras.

RESULTADOS

Composição química da biomassa lignocelulósico

As maiores fontes de carboidratos existente no mundo são oriundas da biomassa lignocelulósica. Esta biomassa inclui vários resíduos agrícolas como palhas, cascas, pedúnculos e caules. A principal dificuldade do uso de biomassa lignocelulósica na conversão em açúcares fermentescíveis, reside nas características químicas e morfológicas existentes entre os três principais componentes dos materiais lignocelulósicos (celulose, hemicelulose e lignina). Geralmente a concentração dos componentes é de 35-50% de celulose, 20-35% de hemicelulose, 10-25% de lignina e uma pequena quantidade de cinzas e extrativos. Porém, essas concentrações variam de acordo com o tipo de biomassa, conforme a Tabela 1. Basicamente, os materiais lignocelulósicos são constituídos por cadeias de celulose envolvidas em uma matriz amorfa de polioses e lignina, cuja principal função é a ação contra os ataques de microrganismos e/ou enzimas, assim tornando esses materiais estruturalmente rígidos e pouco reativos (ZANG et al., 2007; SANTOS et al., 2012; WATKINS et al., 2015).

Palha de cana 40-44 30-32 22-2	32
Tallia do caria 10 TT 00 02 22 2	_
Bagaço de cana 32-48 19-24 23-3	24
Madeira dura 43-47 25-35 16-2	
Madeira mole 40-44 25-29 25-3	31
Talo de milho 35 25 35	
Espiga de milho 45 35 15	
Algodão 95 2 0,3	}
Palha de trigo 30 50 15	
Sisal 73,1 14,2 11	
Palha de arroz 43,3 26,4 16,5	3
Forragem de milho 38-40 28 7-2	1
Fibra de coco 36-43 0, 15-0, 25 41-4	5
Fibra de 60-65 6-8 5-16 bananeira	Э
Palha de cevada 31-45 27-38 14-1	9

Tabela 1 - Composição química de biomassa lignocelulósica de diferentes fontes
FONTE: Santos et al. (2012).

A celulose é o polímero natural em maior concentração na biomassa lignocelulósica e de maior ocorrência no mundo, respondendo por aproximadamente 40% de toda reserva de carbono disponível na biosfera atual (ZHANG et al., 2007). A estrutura desse polissacarídeo é formada por moléculas de glicose ligadas através de ligações β-1,4-glicosídicas unidas por ligações de hidrogênio (Fig. 1). Na parede celular primária de plantas as cadeias de celulose têm graus de polimerização (DP) que variam entre 5.000 a 7.500. Na celulose de madeira o DP é de aproximadamente 10.000, já de celulose de algodão é 15.000. Essas cadeias são formadas por camadas, unidas por forças de van der

Waals com ligações de hidrogênio (GAN et al., 2003). É importante ressaltar que em temperatura ambiente os anéis de glicose rígidos são encontrados no mais baixo nível de energia (WYMAN et al., 2005).

A cadeia linear da D-glicose possui uma liberdade rotacional que permite o ataque da hidroxila do carbono 5 ao carbono 1, resultando na formação de um hemiacetal em relação intramolecular. Após a reação que fecha o anel, as hidroxilas do carbono anomérico (quiral) podem assumir duas possíveis orientações, axial ou equatorial, resultando os anômeros α e β . As formas α e β podem se interconver em soluções aquosas, onde pode ocorrer a abertura ou fechamento do anel (mutarrotação) até o estabelecimento de um equilíbrio (LEHNINGER et al., 1995).

A estrutura da celulose pode ser classificada de três formas. A primeira forma é definida pelas sequências de resíduos β -D-glicopiranosídicos unidos entre si por ligações covalentes, onde formam um homopolímero anidroglicose com ligações β -D ($1 \rightarrow 4$) glicosídicas. A segunda forma é a descrição da conformação molecular, onde caracteriza as distâncias das ligações e respectivos ângulos das unidades repetitivas (celobiose), ou seja, a organização espacial. A terceira forma define a associação molecular que formam agregados com uma determinada estrutura cristalina, estes agregados que conferem a insolubilidade da celulose em água e em alguns tipos de solventes, bem como a resistência às tensões (ATALLA et al., 1993; DING et al., 2006).

As hemiceluloses são heteropolissacarídeos complexos compostos por D-glucose, D-galactose, D-manose, D-xilose, L-arabinose, ácido D-glucurônico e ácido 4-O-metil-glucurônico (Fig. 2). As hemiceluloses são classificadas de acordo com o resíduo de açúcar

Figura 1: Representação esquemática da molécula de celulose. FONTE: Santos et al. (2012).

que é seu principal constituinte (WYMAN et al., 2005). Sua estrutura apresenta ramificações que interagem com a celulose, assim possibilitando maior estabilidade e flexibilidade ao agregado, é importante ressaltar que sua estrutura é mais semelhante à celulose do que a lignina (RAMOS, 2003). Hemiceluloses podem ser encontradas em diferentes subclasses, que incluem glucuronoxilanas, arabinoxilanas, mananas lineares, glicomananas, galactomananas, galactoglicomananas, β -glucanas e xiloglucanas, essas subclasses variam de acordo com a espécie da planta, estágio de desenvolvimento e do tipo de tecidos.

A cadeia linear da D-glicose possui uma liberdade rotacional que permite o ataque da hidroxila do carbono 5 ao carbono 1, resultando na formação de um hemiacetal em relação intramolecular. Após a reação que fecha o anel, as hidroxilas do carbono anomérico (quiral) podem assumir duas possíveis orientações, axial ou equatorial, resultando os anômeros α e β . As formas α e β podem se interconver em soluções aquosas, onde pode ocorrer a abertura ou fechamento do anel (mutarrotação) até o estabelecimento de um equilíbrio (LEHNINGER et al., 1995).

A estrutura da celulose pode ser classificada de três formas. A primeira forma é definida pelas sequências de resíduos $\beta\text{-D-glicopiranos}$ ídicos unidos entre si por ligações covalentes, onde formam um homopolímero anidroglicose com ligações $\beta\text{-D}$ (1 \rightarrow 4) glicosídicas. A segunda forma é a descrição da conformação molecular, onde caracteriza as distâncias das ligações e respectivos ângulos das unidades repetitivas

(celobiose), ou seja, a organização espacial. A terceira forma define a associação molecular que formam agregados com uma determinada estrutura cristalina, estes agregados que conferem a insolubilidade da celulose em água e em alguns tipos de solventes, bem como a resistência às tensões (ATALLA et al., 1993; DING et al., 2006).

As hemiceluloses são heteropolissacarídeos complexos compostos por D-glucose, D-galactose, D-manose, D-xilose, L-arabinose, ácido D-glucurônico e ácido 4-0-metil-glucurônico (Fig. 2). As hemiceluloses são classificadas de acordo com o resíduo de açúcar que é seu principal constituinte (WYMAN et al., 2005). Sua estrutura apresenta ramificações que interagem com a celulose, assim possibilitando maior estabilidade e flexibilidade ao agregado, é importante ressaltar que sua estrutura é mais semelhante à celulose do que a lignina (RAMOS, 2003). Hemiceluloses podem ser encontradas em diferentes subclasses, que incluem glucuronoxilanas, arabinoxilanas, mananas lineares, glicomananas, galactomananas, galactoglicomananas, β -glucanas e xiloglucanas, essas subclasses variam de acordo com a espécie da planta, estágio de desenvolvimento e do tipo de tecidos.

Existem diferentes funções que as hemiceluloses são capazes de realizar como por exemplo as arabinoxilanas, glucuronoxilanas, xiloglucanas e mananas lineares são responsáveis pela estabilização da parede celular através das interações de hidrogênio com a celulose e ligações covalentes com a lignina. Outras como as galactoglicomananas, glicomananas,

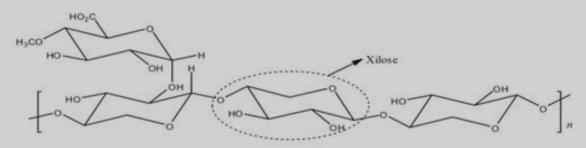


Figura 2: Representação esquemática da molécula de hemicelulose. FONTE: Santos et al. (2012).

DEGRADAÇÃO LIGNOCELULÓSICA POR HIDROLISE ENZIMÁTICA VISANDO A PRODUÇÃO DE Figura 3: Representoção esquemática dos precursores monomérico da lignina. FONTE: Watkins et al., (2015). Álcool p-cumarílico Álcool coniferilico Álcool sinapílico

galactomananas e β -glucanas são fontes de energia extracelular e agem no sistema de armazenagem dos produtos brutos, além disso, estão envolvidas no mecanismo de retenção de agua em sementes (WYMAN et al., 2005). É importante ressaltar que, na maioria das vezes as hemiceluloses estão quimicamente associadas ou reticuladas a outros polissacarídeos, proteínas ou ligninas.

Depois da celulose, a macromolécula mais abundante dentre os materiais lignocelulósicos é a lignina, representando de 20 a 30% da massa total da biomassa lignocelulósica. Esta é um heteropolímero amorfo que possui três unidades diferentes de fenilpropanos (álcool p-cumarílico, álcool coferílico e álcool sinapílico) que são precursores monoméricos (Fig. 3) (DENCE; LIN, 1992). Estes fenilpropanos geram unidades p- hidroxibenzílicas, guaiacílicas e siringilicas.

Para que ocorra o deposito da lignina juntamente com os carboidratos, deve ocorrer a lignificação, onde serão formadas ligações covalentes com unidades monossacarídicas das hemiceluloses (WATKINS et al., 2015). É importante ressaltar que a composição e a organização dos constituintes da lignina variam de acordo com a espécie e da matriz celulose-hemicelulose.

Outros extrativos são encontrados nos materiais lignocelulósicos, além dos três constituintes principais. Esses componentes podem variar em cada espécie de biomassa lignocelulósica e representam aproximadamente de 5 a 20% da massa. As substâncias químicas que estão incluídas nesses

extrativos são: terpenos/terpenoides, gorduras/ceras, vários componentes fenólicos, proteínas e cinzas (RABELO, 2007). Essas substancias químicas fornecem características da planta, como cheiro, cor, sabor e propriedades abrasivas (FENDEL; WEGENER, 1989; D'ALMEIDA, 1988).

Pré-tratamentos de materiais lignocelulósicos

Os materiais lignocelulósicos são insolúveis e recalcitrantes, e precisam de pré-tratamento mecânico, físico ou químico, seguido de hidrólise para obtenção de monômeros e consequente produção de etanol. Para que a biomassa lignocelulósica possa ser utilizada como matéria -prima em processos químicos ou biológicos, estas necessitam passar por um pré-tratamento para desorganizar o complexo lignocelulósico. A lignina é o principal obstáculo, pois a sua quebra libera alguns subprodutos que inibem o processo fermentativo (HENDRIKS; ZEEMAN, 2009).

O pré-tratamento é responsável pela quebra da lignina e solubilização dos componentes hemicelulósicos a fim de fornecer açúcares fermentescíveis. Esse processo tem como principais objetivos reduzir a cristalinidade da celulose, reduzir a polimerização da hemicelulose e lignina e aumentar a área de superfície para a atuação de enzimas (KHARE; PANDEY; LARROCHE, 2015).

O pré-tratamento deve melhorar a formação de açúcares, evitar a perda ou degradação de carboidratos, evitar a formação de subprodutos inibidores para a fermentação e hidrólise e além disso

o pré-tratamento deve ser rentável (SUN; CHENG, 2002).

Pré-tratamentos para a biomassa lignocelulósica incluem, métodos químicos, mecânicos ou físicos, biológicos e várias combinações dos mesmos, e a escolha de cada pré-tratamento irá depender da matéria-prima (LEE; OH; LEE, 2015).

Pré-tratamento físico

Consiste basicamente na trituração e moagem da matéria-prima e tem como objetivo reduzir o tamanho das partículas e a cristalinidade. Reduzir o tamanho da partícula possibilita o aumento da superfície disponível e uma redução do grau de polimerização. Vale ressaltar que este tipo de pré-tratamento não gera inibidores e apresenta bons rendimentos de etanol e metano. Muito embora, este processo não é tão viável economicamente, uma vez que gera alto consumo de energia e consequentemente aumenta o custo do processo (GHAFFAR; FAN; MCVICAR, 2015).

Pré-tratamento físico-químico (Explosão a vapor, Térmico, AFEX e Explosão de CO2)

Pré-tratamento térmico

Este processo faz uso de elevadas temperaturas (superiores a 180°C) para que seja possível a ruptura do complexo lignocelulósico, quando se empregam temperaturas superiores a 250°C este processo é denominado pirólise. Uma desvantagem do prétratamento térmico é que este libera compostos inibitórios (HENDRIKS; ZEEMAN, 2009).

Explosão a vapor

Este processo consiste no uso de alta pressão de vapor saturado, onde a temperatura varia entre 160 a 260 °C. A biomassa lignocelulósica é submetida a uma despressurização rápida, que acarreta em uma explosão do material. Existem algumas variações do pré-tratamento de explosão a vapor, onde pode-se utilizar líquido de água quente, amônia (AFEX) ou CO2 ao invés do vapor (HENDRIKS; ZEEMAN, 2009).

Pré-tratamento químico

O pré-tratamento químico consiste em tratamentos com ozônio, ácidos, bases e solventes orgânicos.

Ozonólise

A ozonólise consiste em um pré-tratamento que faz uso do ozônio para que ocorra a degradação dos materiais lignocelulósicos. Tal processo remove a lignina de forma eficaz e não há a produção resíduos tóxicos. Além disso, outra vantagem desse processo utilizando ozônio é que as reações são realizadas a temperatura e pressão ambiente. (HENDRIKS; ZEEMAN, 2009)

Já o processo denominado organosolv é feito com a mistura de solventes orgânicos e água em elevadas temperaturas na presença de um catalisador, podendo ser ácido clorídrico, ácido sulfúrico, cloreto de cálcio, dentre outros (HENDRIKS; ZEEMAN, 2009). Diversos tipos de solventes podem ser utilizados nesse processo, como: acetona, etanol, metanol, ácido acético e ácido fórico (RAMOS et al., 2013; WU et al., 2014). Entretanto, devido ao baixo custo, as características químicas e a fácil recuperação o etanol é atualmente o solvente mais utilizado no processo de organosolv (ZHANG et al., 2013). A vantagem desta técnica é a recuperação elevada, não apresentar toxicidade e o alto grau de pureza da lignina, em torno de 70% (ZHANG et al., 2010; WEN et al., 2013).

Pré-tratamento biológico

Esta forma de pré-tratamento ocorre por meio de microrganimos, como por exemplo, o fungo da podridão branca e marrom, que produzem naturalmente enzimas como lacases e peroxidases (capazes de degradar a lignina e hemicelulose dos materiais lignocelulósicos). O pré-tratamento com uso de microrganismos apresenta a vantagem de ter baixo custo de energia, além de condições ambientais amenas. Por outro lado, apresenta baixa taxa de hidrólise e perda da fração celulósica (GHAFFAR; FAN; MCVICAR, 2015).

DISCUSSÃO

Hidrólise enzimático

As duas principais técnicas mais estudadas na literatura para obtenção de açúcares fermentescíveis de materiais lignocelulósicos são a hidrólise com ácidos ou a hidrólise enzimática (DELABONA et al., 2012).

A hidrólise com ácidos é bastante conhecida e explorada, porém apresenta desvantagens em relação a sua toxidez e corrosividade, assim no ponto de vista ambiental é uma técnica poluente por conta dos solventes utilizados. Além disto, se faz necessário o uso de reatores altamente resistentes à corrosão.

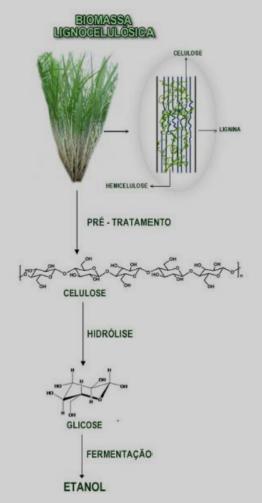


Figura 4: Representação esquemática da produção de etanol a partir de biomassa lignocelulósica. Fonte: Santos et al. (2012).

Deste modo, apesar de um custo mais elevado, a hidrólise enzimática se destaca, uma vez que apresenta rendimentos mais efetivos, não gera inibidores e é ambientalmente mais vantajosa (KHARE; PANDEY; LARROCHE, 2015).

O processo de hidrólise enzimática pode ser otimizado através da suplementação de β -glicosidases ou remoção dos açúcares durante a hidrólise ou ainda pode-se melhorar a hidrólise através da adição de agentes surfactantes tensioativos (HENDRIKS; ZEEMAN, 2009).

Através de estudos sobre a hidrolise enzimática da celulose, consideram-se que este polímero é encontrado em duas formas: amorfa ou cristalina. A enzima celulase, que realiza a hidrólise enzimática da celulose, é altamente especificas em relação ao seu substrato, essa especificidade da celulase evita a degradação da glicose, o que pode ocorrer na hidrólise ácida, portanto uma vantagem para utilização da hidrólise enzimática (CONTIERO, 1992). O rendimento da hidrólise enzimática da celulose com a enzima celulase é muito baixo, isto é explicado pela estrutura altamente cristalina da celulose, que dificulta o acesso aos sítios ativos do substrato (DADI et al., 2006). Além disso, a absorção física da celulase sobre a lignina dificulta mais ainda o processo de hidrólise.

Devido a estas dificuldades, necessita-se de uma etapa de pré-tratamento da biomassa lignocelulósica, cujo principal objetivo é a quebra da estrutura cristalina de celulose e hemicelulose e a remoção da lignina, possibilitando assim a ação enzimática nas moléculas de celulose e hemicelulose. A lignina age como barreira física para as enzimas que atuam na hidrólise da biomassa e influencia na quantidade de enzima requerida para o processo, dificultando a recuperação da enzima após o processamento de hidrólise (LU et al., 2002). Na hidrólise enzimática geralmente o rendimento de açucares é menor que 20%, já em processos de produção de etanol, onde utiliza-se a etapa de pré-tratamento, o rendimento pode alcançar até 90% (SOUSA et al., 2009).

O etanol que é produzido a partir de carboidratos complexos segue algumas etapas: 1) pré-tratamento da biomassa para abertura das fibras; 2) hidrólise enzimática para obtenção de açúcares fermentescíveis; 3) fermentação destes açúcares em etanol e 4) separação e purificação (Fig. 4) (BINOD et al., 2012, ROCHA et al., 2013).

CONCLUSÃO

Portanto, para a produção de etanol por biomassa lignocelulósica é essencial a etapa de pré-tratamento da matéria prima, pois nesta etapa ocorre a quebra da estrutura cristalina de celulose e hemicelulose e a remoção da lignina, possibilitando assim a ação enzimática nas moléculas de celulose e hemicelulose na etapa posterior de hidrolise enzimática. É importante ressaltar que a hidrolise enzimática possui alta especificidade com o substrato, portanto isto é uma vantagem comparado a outros métodos de hidrólise de biomassa lignocelulósica, pois a especificidade da celulase evita a degradação da glicose.

REFERENCIASI

ATALLA, R. H.; HACKNEY, J. M.; UHLIN, I.; THOMPSON, N. S. Hemicelluloses as structure regulators in the aggregation of native cellulose. International Journal Biological Macromolecules, v. 15 p. 109-112, 1993.

BINOD, P.; KUTTIRAJA, M.; ARCHANA, M.; USHA, J.K.; SINDHU, R.; SUKUMARAN R.K.; PANDEY, A. High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel, v. 92, n. 1, p. 340-345, 2012.

BROWN, R. M. Cellulose structure and biosynthesis. Pure and Applied Chemistry, v. 71, n. 5, p. 767-775, 1999.

CONTIERO, J. Estudo da produção da enzima invertase extracelular por Kluyveromyces bulgaricus Tese (Doutorado). Faculdade de Engenharia de Alimentos, Unicamp, 1992.

D' ALMEIDA, M. H. Celulose e papel. 2. ed. São Paulo Instituto de Pesquisa Tecnológicas do estado de São Paulo: Escola SENAL. 1988.

DADI, A. P.; VARANASI, S.; SCHALL, C. A. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng. v. 95, n. 5, p. 904-910, 2006.

DELABONA, P. S.; PIROTA, R. D. P. B.; CODIMA, C. A.; TREMACOLDI, C. R.; RODRIGUES, A.; FARINAS, C. S. Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass and bioenergy, v. 37, p. 243-250, 2012.

DENCE, C. W.; LIN, S. Y. Methods in lignin chemistry.

Springer verlage, 1992.

DEGRADAÇÃO LIGNOCELULÓSICA POR HIDRÓLISE ENZIMÁTICA VISANDO A PRODUÇÃO DE ETANOL

DING, S. Y.; HIMMEL, M. E. The maize primary cel wall microfibril: a new model derived from direct visualization. Journal of Agricultural and Food Chemistry, v. 54, p. 597-606, 2006.

FENGEL, D.; WEGENER, G. Wood: chemistry, ultrastruture, reactions. Berlin: Walter de Gruyter, 1989.

GAN, Q.; ALLEN, S. J.; TAYLOR, G. Kinetic dynamics in heterogeneous enzymatic hydrolysis of celulose: no overview, na experimantal study and mathematical modeling. Process Biochemistry, v. 38, p. 1003-1018, 2003.

GHAFFAR, S. H.; FAN, M.; MCVICAR, B. Bioengineering for utilisation and bioconversion of straw biomass into bio-products. Industrial Crops and Products v. 77, p. 262-274, 2015

HENDRIKS, A. T. W. M.; ZEEMAN, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, v. 100, n. 1, p. 10-18, 2009

KHARE, S. K.; PANDEY, A.; LARROCHE, C. Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochemical Engineering Journal, v. 102, p. 38-44, 2015.

LEE, O. K. K.; OH, Y. K.; LEE, EUN, Y. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresource Technology, v. 196, p. 22-27, 2015

LEHNINGER, A. L.; NELSON, D. L.; COX, M. M. Princípios de bioauímica. São Paulo: Sarvier, 1995

LU, Y.; YANG, B.; GREGG, D.; SADDLER, J. N.; MANSFIELD, S. D. Cellulase adsorption and na evaluaton of enzyme recycle during hydrolysis of steam - exploded softwood residues. Applied Biochemistry and Biotechnology. v. 98, p. 641 - 654, 2002

RABELO, S. C. Avaliação do desempenho do prétratamento com peroxide de hidrogênio alcalino para a hidrólise enzimática do bagaço de cana-de-açúcar Dissertação (Mestrado). Universidade Estadual de Campinas, Campinas, 2007.

RAMOS, L. P. The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova, v. 26, p. 863-871, 2003.

RAMOS, P. A. B.; GUERRA, A. R.; GUERREIRO, O.; FREIRE, C. S. R.; SILVA, A. M. S.; DUARTE, M. F.; SILVESTRE, A. J. D. Lipophilic extracts of Cynara cardunculus L. var. altilis (Dc): A source of valuable bioactive terpenic compounds. Journal of Agricultura and Food Chemistry, v. 61, n. 35, p. 8420-8429, 2013.

DEGRADAÇÃO LIGNOCELULÓSICA POR HIDRÓLISE ENZIMÁTICA VISANDO A PRODUÇÃO DE ETANOL

ROCHA, N.R.A.F.; BARROS, M.A.; FISCHER, J.; FILHO, U.C.; CARDOSO, V. L. Ethanol production from agroindustrial biomass using a crude enzyme complex produced by Aspergillus niger. Renewable Energy, v. 57. p. 432-435, 2013.

SANTOS, F. A.; QUEIRÓZ, J. H.; COLODETTE, J. L.; FERNANDES, S. A.; GUIMARÃES V. M.; REZENDE, S. T. Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova, v. 35, n. 5, p. 1004-1010, 2012.

SOCCOL, R. C.; VANDENBERGHE, L. P. S.;
MEDEIROS, A. B. P.; KARP, S. G.; BUCKERIDGE, M.;
RAMOS, L. P.; PITARELO, A. P.; FERREIRA-LEITÃO,
V.; GOTTSCHALK, L. M. F.; FERRARA, M. A.; BON,
E. P. S.; MORAES, L. M. P.; ARAÚJO, J. A.; TORRES,
F. A. G. Bioethanol from lignocelluloses: Status and
perspectives in Brazil. Bioresource technology, v. 101,
p.4820-4825, 2010.

SOUSA, L. C.; CHUNDAWAT, S. P. S.; BALAN, V.; DALE, B. E. 'Cradle-to-grave' assessment of existing lignocelluloses pretreatment technologies. Current Opinion in Biotechnology, v. 20, p. 339, 2009.

SUN, Y.; CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, v. 83, n. 1, p. 1-11, 2002.

WATKINS, D.; NURUDDIN, M. D.; HOSUR, M.; TCHERBI-NARTEH, A.; JEELANI, S. Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology, v. 4, n. 1, p. 26–32, 2015.
WU, M., PANG, J., ZHANG, X. & SUN, R. Enhancemen of Lignin Biopolymer Isolation from Hybrid Poplar by Organosolv Pretreatments. International Journal of Polymer Science, 2014.

WYMAN, C. E.; DALE, B. E.; ELANDER, R. T.; HOLTZAPPLE, M.; LADISCH, M. R.; LEE, Y. Y. Coordinated development of leading biomass pretreatment Technologies. Bioresource Technology, v 96, p. 1959-1966, 2005.

ZANG, Y. H. P.; DING, S. Y.; MIELENZ, J. R.; ELANDER, R.; LASER, M.; HIMMEL, M.; MCMILLAN, J. D.; LYND, L. R. Fractionating recalcitrante lignocellulose at modest reaction conditions. Biotecnology and Bioengineering v. 97, p. 214-223, 2007.

ZHANG, A., LU, F., LIU, C. & SUN, R. C. Isolation and characterization of lignins from Eucalyptus tereticornis (12abl). Journal of Agricultural and Food Chemistry, v 58 p. 11287-11293 2010

ZHANG, H., ZHAO, X., DING, X., LEI, H. & WANG, Z. Preparing spherical lignin from rice husk. Bioprocess and Biosyst Engineering, v. 36, v. 8, p. 1149–1155, 2013